An Approximation Method for Continuous Pseudocontractive Mappings
نویسندگان
چکیده
LetK be a closed convex subset of a real Banach space E, T : K → K is continuous pseudocontractive mapping, and f : K → K is a fixed L-Lipschitzian strongly pseudocontractive mapping. For any t ∈ (0,1), let xt be the unique fixed point of t f + (1− t)T . We prove that if T has a fixed point and E has uniformly Gâteaux differentiable norm, such that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive self-mappings, then {xt} converges to a fixed point of T as t approaches to 0. The results presented extend and improve the corresponding results of Morales and Jung (2000) and Hong-Kun Xu (2004).
منابع مشابه
Implicit iteration approximation for a finite family of asymptotically quasi-pseudocontractive type mappings
In this paper, strong convergence theorems of Ishikawa type implicit iteration process with errors for a finite family of asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings in normed linear spaces are established by using a new analytical method, which essentially improve and extend some recent results obtained by Yang ...
متن کاملConvergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings
The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.
متن کاملImplicit Iteration Approximation for a Finite Family of Asymptotically Quasi-pseudocontractive Type Mappings
In this paper, strong convergence theorems of Ishikawa type implicit iteration process with errors for a finite family of asymptotically nonexpansive in the intermediate sense and asymptotically quasi-pseudocontractive type mappings in normed linear spaces are established by using a new analytical method, which essentially improve and extend some recent results obtained by Yang [Convergence the...
متن کاملApproximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملAn extragradient-like approximation method for variational inequalities and fixed point problems
The purpose of this paper is to investigate the problem of finding a common element of the set of fixed points of an asymptotically strict pseudocontractive mapping in the intermediate sense and the set of solutions of a variational inequality problem for a monotone and Lipschitz continuous mapping. We introduce an extragradient-like iterative algorithm that is based on the extragradient-like a...
متن کامل